

Datasheet **Durethan AKV30H2.0 901510**

PA 66, 30% glass fibers, injection molding, heat-aging stabilized

ISO Shortname: ISO 16396-PA 66,GF30,GHR,S14-100

Property	Test Condition	Unit	Standard	guide value ¹	
Rheological properties					
C Molding shrinkage, parallel	60x60x2; 290 °C / MT 80 °C; 600 bar	%	ISO 294-4	0.39	
C Molding shrinkage, transverse	60x60x2; 290 °C / MT 80 °C; 600 bar	%	ISO 294-4	0.93	
Post- shrinkage, parallel	60x60x2; 120 °C; 4 h	%	ISO 294-4	0.07	
Post- shrinkage, transverse	60x60x2; 120 °C; 4 h	%	ISO 294-4	0.13	
Mechanical properties (23 °C/50 % r. h.)					
CTensile modulus	1 mm/min	MPa	ISO 527-1,-2	10000	6000
C Tensile Stress at break	5 mm/min	MPa	ISO 527-1,-2	175	110
C Tensile Strain at break	5 mm/min	%	ISO 527-1,-2	3.0	6.0
C Charpy impact strength	23 °C	kJ/m²	ISO 179-1eU	75	85
C Charpy impact strength	-30 °C	kJ/m²	ISO 179-1eU	60	60
C Charpy notched impact strength	23 °C	kJ/m²	ISO 179-1eA	< 10	14
C Charpy notched impact strength	-30 °C	kJ/m²	ISO 179-1eA	< 10	< 10
Charpy notched impact strength	-40 °C	kJ/m²	ISO 179-1eA	< 10	< 10
Izod impact strength	23 °C	kJ/m²	ISO 180-1U	60	80
Izod impact strength	-30 °C	kJ/m²	ISO 180-1U	55	60
Izod notched impact strength	23 °C	kJ/m²	ISO 180-1A	10	15
Izod notched impact strength	-30 °C	kJ/m²	ISO 180-1A	< 10	< 10
Flexural modulus	2 mm/min	MPa	ISO 178-A	9200	5700
Flexural strength	2 mm/min	MPa	ISO 178-A	270	180
Flexural strain at flexural strength	2 mm/min	%	ISO 178-A	4.0	6.0
Flexural stress at 3.5 % strain	2 mm/min	MPa	ISO 178-A	265	150
C Puncture maximum force	23 °C	N	ISO 6603-2	900	1160
C Puncture maximum force	-30 °C	N	ISO 6603-2	800	
C Puncture energy	23 °C	J	ISO 6603-2	2.8	5.4
C Puncture energy	-30 °C	J	ISO 6603-2	2.3	
Ball indentation hardness		N/mm²	ISO 2039-1	220	120
Thermal properties					
C Melting temperature	10 °C/min	°C	ISO 11357-1,-3	263	
CTemperature of deflection under load	1.80 MPa	°C	ISO 75-1,-2	242	
C Temperature of deflection under load	0.45 MPa	°C	ISO 75-1,-2	>250	
Vicat softening temperature	50 N; 120 °C/h	°C	ISO 306	250	
C Coefficient of linear thermal expansion, parallel	23 to 55 °C	10 ⁻⁴ /K	ISO 11359-1,-2	0.3	
C Coefficient of linear thermal expansion, transverse	23 to 55 °C	10 ⁻⁴ /K	ISO 11359-1,-2	0.9	

Datasheet **Durethan AKV30H2.0 901510**

Property	Test Condition	Unit	Standard	guide value 1	
C Burning behavior UL 94	1.5 mm	Class	UL 94	HB	ond.
C Burning behavior UL 94	0.75 mm	Class	UL 94	НВ	
C Oxygen index	Method A	%	ISO 4589-2	23	
Resistance to heat (ball pressure test)		°C	IEC 60695-10-2	253	
Glow wire test (GWFI)	0.75 mm	°C	IEC 60695-2-12	700	
Glow wire test (GWFI)	1.5 mm	°C	IEC 60695-2-12	700	
Glow wire test (GWFI)	3.0 mm	°C	IEC 60695-2-12	700	
Burning behavior US-FMVSS302	>=1.0 mm		ISO 3795	passed	
C Vicat softening temperature	50 N; 50 °C/h	°C	ISO 306	230	
Electrical properties (23 °C/50 % r. h.)					
C Relative permittivity	100 Hz	=	IEC 60250	4.0	12
C Relative permittivity	1 MHz	-	IEC 60250	4.0	4.0
C Dissipation factor	100 Hz	10 ⁻⁴	IEC 60250	120	2700
C Dissipation factor	1 MHz	10 ⁻⁴	IEC 60250	190	800
C Volume resistivity		Ohm-m	IEC 62631-3	1E13	1E10
C Surface resistivity		Ohm	IEC 62631-3	1E15	1E13
C Electric strength	1 mm	kV/mm	IEC 60243-1	35	30
C Comparative tracking index CTI	Solution A	Rating	IEC 60112	475	
Other properties (23 °C)					
C Water absorption (Saturation value)	Water at 23 °C	%	ISO 62	5.5	
C Water absorption (Equilibrium value)	23 °C; 50 % RH	%	ISO 62	2.0	
C Density		kg/m³	ISO 1183	1360	
Bulk density		kg/m³	ISO 60	700	
Processing conditions for test specimens					
C Injection molding-Melt temperature		°C	ISO 294	290	-
C Injection molding-Mold temperature		°C	ISO 294	80	
Processing recommendations					
Drying temperature dry air dryer		°C	-	80	
Drying time dry air dryer		h	-	2-6	
Residual moisture content		%	Acc. to Karl Fischer	0.03-0.12	
Melt temperature (Tmin - Tmax)		°C	-	280-300	
Mold temperature		°C	-	80-120	

Notes

¹ Typical properties: these are not to be construed as specifications

CThese property characteristics are taken from the CAMPUS plastics data bank and are based on the international catalogue of basic data for plastics according to ISO 10350.

Datasheet Durethan AKV30H2.0 901510

Disclaimer

Standard Disclaimer

The manner in which you use and the purpose to which you put and utilize our products, technical assistance and information (whether verbal, written or by way of production evaluations), including any suggested formulations and recommendations, are beyond our control. Therefore, it is imperative that you test our products, technical assistance and information to determine to your own satisfaction whether they are suitable for your intended uses and applications. This application-specific analysis must at least include testing to determine suitability from a technical as well as health, safety and environmental standpoint. Such testing has not necessarily been done by us. Unless we otherwise agree in writing, all products are sold strictly pursuant to the terms of our standard conditions of sale. All information and technical assistance is given without warranty or guarantee, and is subject to change without notice. It is expressly understood and agreed that you assume and hereby expressly release us from all liability, in tort, contract or otherwise, incurred in connection with the use of our products, technical assistance and information. Any statement or recommendation not contained herein is unauthorized and shall not bind us. Nothing herein shall be construed as a recommendation to use any product in conflict with patents covering any material or its use. No license is implied or in fact granted under the claims of any patent.

Typical Properties

Property data is provided as general information only. Property values are approximate and are not part of the product specifications.

Flammability

Flammability results are based on small-scale laboratory tests for purposes of relative comparison and are not intended to reflect the hazards presented by this or any other material under actual fire conditions.

Health and Safety

Appropriate literature has been assembled which provides information concerning the health and safety precautions that must be observed when handling Envalior products mentioned in this publication. Before working with these products, you must read and become familiar with the available information on their hazards, proper use, and handling. This cannot be overemphasized. Information is available in several forms, e.g., material safety data sheets (MSDS) and product labels. Consult your Envalior representative or contact the Product Safety and Regulatory Affairs Department. For materials that are not Envalior products, appropriate industrial hygiene and other safety precautions recommended by their manufacturer(s) must be followed.

Regulatory Compliance

Some of the end uses of the products described in this brochure must comply with applicable regulations, such as the FDA, NSF, USDA and CPSC. If you have any questions on the regulatory status of any Envalior engineering thermoplastic, consult your Envalior representative or contact the Regulatory Affairs Manager.

Color and Visual Effects

Type and quantity of pigments or additives used to obtain certain colors and special visual effects can affect mechanical properties.

© Envalior Performance Materials LLC | Pittsburgh, PA 15275

Page 3 of 3

Edition 20.12.2023